Reliability
Index
UncertaintyQuantification.DoubleLoop
UncertaintyQuantification.FORM
UncertaintyQuantification.RandomSlicing
UncertaintyQuantification.probability_of_failure
UncertaintyQuantification.probability_of_failure
Types
UncertaintyQuantification.FORM Type
julia
FORM(n::Integer=10,tol::Real=1e-3,fdm::FiniteDifferencesMethod=CentralFiniteDifferences(3))
used to perform the first order reliability method using the HLRF algorithm with n
iterations and tolerance tol
. Gradients are estimated through fdm
.
References
[12]
sourceUncertaintyQuantification.DoubleLoop Type
julia
sourceDoubleLoop(lb::AbstractSimulation, ub::AbstractSimulation)
UncertaintyQuantification.RandomSlicing Type
julia
sourceRandomSlicing(lb::AbstractSimulation, ub::AbstractSimulation)
Methods
UncertaintyQuantification.probability_of_failure Method
julia
probability_of_failure(models::Union{Vector{<:UQModel},UQModel},performance::Function),inputs::Union{Vector{<:UQInput},UQInput},sim::FORM)
Perform a reliability analysis using the first order reliability method (FORM), see FORM
. Returns the estimated probability of failure pf
, the reliability index β
and the design point dp
.
Examples
pf, β, dp = probability_of_failure(model, performance, inputs, sim)
UncertaintyQuantification.probability_of_failure Method
julia
probability_of_failure(models::Union{Vector{<:UQModel},UQModel},performance::Function),inputs::Union{Vector{<:UQInput},UQInput},sim::AbstractMonteCarlo)
Perform a reliability analysis with a standard Monte Carlo simulation. Returns the estimated probability of failure pf
, the standard deviation σ
and the DataFrame
containing the evaluated samples
. The simulation sim
can be any instance of AbstractMonteCarlo
.
Examples
pf, σ, samples = probability_of_failure(model, performance, inputs, sim)