Inputs
Index
UncertaintyQuantification.EmpiricalDistribution
UncertaintyQuantification.Interval
UncertaintyQuantification.IntervalVariable
UncertaintyQuantification.Parameter
UncertaintyQuantification.ProbabilityBox
UncertaintyQuantification.RandomVariable
UncertaintyQuantification.sample
UncertaintyQuantification.sample
Types
UncertaintyQuantification.Parameter Type
Parameter(value::Real, name::Symbol)
Defines a parameter value (scalar), with an input value and a name.
Examples
julia> Parameter(3.14, :π)
Parameter(3.14, :π)
UncertaintyQuantification.RandomVariable Type
RandomVariable(dist::UnivariateDistribution, name::Symbol)
Defines a random variable, with a univariate distribution from Distributions.jl and a name.
Examples
julia> RandomVariable(Normal(), :x)
RandomVariable{Normal{Float64}}(Normal{Float64}(μ=0.0, σ=1.0), :x)
julia> RandomVariable(Exponential(1), :x)
RandomVariable{Exponential{Float64}}(Exponential{Float64}(θ=1.0), :x)
UncertaintyQuantification.EmpiricalDistribution Type
EmpiricalDistribution(x::Vector{<:Real}, n::Integer=10000)
Creates an empirical distribution from the data given in `x` using kernel density estimation.
The kernel used is Gaussian and the bandwidth is obtained through the Sheather-Jones method.
The support is inferred from the kde using numerical root finding.
The `cdf` and `quantile` functions are linearly interpolated using `n` data points.
UncertaintyQuantification.Interval Type
Interval(lb::Real, up::real)
Defines an Interval, with lower a bound, an upper bound.
This is a data type used internally and to construct p-boxes. For interval inputs see IntervalVariable
.
Examples
jldoctest julia> Interval(0.10, 0.14) Interval(0.1, 0.14)
UncertaintyQuantification.IntervalVariable Type
IntervalVariable(lb::Real, up::real, name::Symbol)
Defines an IntervalVariable input , with lower bound lb
, upper bound ub
and name
.
This is an input type. To construct p-boxes with interval parameters use Interval
Examples
jldoctest julia> Interval(0.10, 0.14, :x) Interval(0.1, 0.14, :x)
UncertaintyQuantification.ProbabilityBox Type
ProbabilityBox{T}(p::Dict{Symbol,Union{Real,Interval}})
Defines an ProbabilityBox from a Dict
mapping each of the parameters of the UnivariateDistribution
T
to a Real
or Interval
.
Examples
julia> ProbabilityBox{Uniform}(Dict(:a => Interval(1.75, 1.83), :b => Interval(1.77, 1.85)))
ProbabilityBox{Uniform}(Dict{Symbol, Union{Real, Interval}}(:a => [1.75, 1.83], :b => [1.77, 1.85]), 1.75, 1.85)
julia> ProbabilityBox{Normal}(Dict(:μ => Interval(0, 1), :σ => Interval(0.1, 1)))
ProbabilityBox{Normal}(Dict{Symbol, Union{Real, Interval}}(:μ => [0, 1], :σ => [0.1, 1]), -Inf, Inf)
Functions
UncertaintyQuantification.sample Function
sample(rv::RandomVariable, n::Integer=1)
Generates n samples from a random variable. Returns a DataFrame.
Examples
See also: RandomVariable
UncertaintyQuantification.sample Function
sample(inputs::Vector{<:UQInput}, n::Integer=1)
Generates n correlated samples from a collection of inputs. Returns a DataFrame
See also: RandomVariable
, Parameter